Hi Gordon - Jeffrey Smith is well-recognized by those who are working as public awareness advocates to educate about the potential health and environmental risks of GMOs as well as glyphosate, itself. He is invited to speak in many countries throughout the world beyond the US. Mentioned initially, in his interview with Stephanie Seneff, PhD, research scientist at MIT, Dr. Seneff confirms Jeffrey’s platform.
Regardless of his ‘approach’ to spreading the word, I think it makes sense to keep an open mind about the known risks of glyphosate as well as the potential risks from long-term exposure… only some of which are now being recognized. Opinions are just that but the science is showing there is cause for concern even though Monsanto, Sargenta and others are doing all they can to obfuscate the risk factors.
There are many studies examining both the glyphosate and GMO impact on the environment and health including animals fed GMO food that are then used for human consumption. Many state it is too soon to know the full extent of the potential for damage in humans.
Dr Seneff’s work was mentioned previously in the Jeffrey Smith discussion on this important study findings
Samsel A, Seneff S.
Glyphosate's Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy. 2013; 15(4):1416-1463.
As one example, from a report on this topic, I’ve included the accompanying study references below… and this conclusion from the first reference,
de Vendômois JS, Cellier D, Vélot C, Clair E, Mesnage R, Séralini GE.
Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci. 2010 Oct 5;6(6):590-8.
Here’s the conclusion….
Conclusions and perspectives
Controversy on biological interpretations is a usual way of advancement in science. It would however have been beneficial for the acceptance of biotechnologies by the public at large, to close this scientific debate by longer, more detailed, and transparent toxicological tests on GMOs, and in particular twenty years ago when the most widely grown GMOs were still experimental.
We wish to reassert that our work does not claim to demonstrate the chronic toxicity of the GMOs in question, especially since it is based on the data originating from insufficient tests that were accepted by regulatory authorities and Monsanto et al., a fact for which we are not in any way responsible. For the regulatory authorities, as well as Monsanto et al, these tests prove chronic innocuousness for mammalian and human public health. And they claim it is not essential to demonstrate the GMOs innocuousness. This again raises the same issues and consequences. We have revealed the inefficiency both of these tests and of their statistical analysis and biological interpretations, for the various reasons detailed above. However, some of the in vivo 90-day tests are not performed any longer today to get worldwide commercial authorizations, especially for GMO with “stacked events” (i.e., producing one or several insecticides and tolerating one or two herbicides), and this is even more seriously inadequate since the so-called “cocktail effects” are not taken into consideration.
The same controversy took place (February 2010) in India, in relation to the authorization process for a transgenic eggplant that produces a new Bt insecticide. This authorization was based on three-month tests on three mammals and other animals for shorter times, which presented significant biological effects after this GM consumption 10, 25. The same arguments were used in the debate in India. But in this case, the government decided to take the time to study chronic health effects, following our expertise, and therefore to implement a moratorium 26.
In the present case, we wish to underline that the commercial GMOs in question contain pesticide residues, some of which have been demonstrated as human cellular endocrine disruptors at levels around 1000 times below their presence in some GM feed 27. Such Roundup residues are present in more than 80% of edible cultivated GMOs. This does not exclude other possible effects.
As a conclusion, we call for the promotion of transparent, independent and reproducible health studies for new commercial products, the dissemination of which implies consequences on a large scale. Lifetime studies for laboratory animals consuming GMOs must be performed, by contrast to what is done today, like the two-year long tests on rats for some pesticides or some drugs. Such tests could be associated to transgenerational, reproductive or endocrine research studies. And moreover, shortcomings in experimental designs may raise major questions on other chemical authorizations.
[
www.ncbi.nlm.nih.gov]
A few of many references on this topic:
.Gilles-Eric Séralini, Dominique Cellier, Joël Spiroux de Vendomois . New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol. 2007 May;52(4):596-602. Epub 2007 Mar 13.
. de Vendômois JS, Roullier F, Cellier D, Séralini GE. A comparison of the effects of three GM corn varieties on mammalian health. Int J Biol Sci. 2009 Dec 10;5(7):706-26.
. Carl-Alfred Alpert, Denis D G Mater, Marie-Claude Muller, Marie-France Ouriet, Yvonne Duval-Iflah, Gérard Corthier. Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice.Environ Biosafety Res. 2003 Jul-Sep;2(3):173-80.
. M Gruzza, M Fons, M F Ouriet, Y Duval-Iflah, R Ducluzeau. Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microb Releases. 1994 Jul;2(4):183-9.
. Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol. 2011 May;31(4):528-33. doi: 10.1016/j.reprotox.2011.02.004. Epub 2011 Feb 18.
. Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota invitro. Curr Microbiol. 2013 Apr;66(4):350-8. doi: 10.1007/s00284-012-0277-2. Epub 2012 Dec 9.
Krüger M, Shehata AA, Schrödl W, Rodloff A. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe. 2013 Feb 6. pii: S1075-9964(13)00018-8. doi: 10.1016/j.anaerobe.2013.01.005. [Epub ahead of print]
F Mañas, L Peralta, J Raviolo, H García Ovando, A Weyers, L Ugnia, M Gonzalez Cid, I Larripa, N Gorla. Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicol Environ Saf. 2009 Mar ;72(3):834-7. Epub 2008 Nov 14.
Benachour N, Séralini GE. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol. 2009 Jan;22(1):97-105. doi: 10.1021/tx800218n.
Taetzsch T, Block ML. Pesticides, Microglial NOX2, and Parkinson's Disease. J Biochem Mol Toxicol. 2013 Feb;27(2):137-49. doi: 10.1002/jbt.21464. Epub 2013 Jan 24.
. Wang G, Fan XN, Tan YY, Cheng Q, Chen SD. Parkinsonism after chronic occupational exposure to glyphosate. Parkinsonism Relat Disord. 2011 Jul;17(6):486-7. doi: 10.1016/j.parkreldis.2011.02.003. Epub 2011 Mar 2.
. Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC. Parkinsonism after glycine-derivate exposure. Mov Disord. 2001 May;16(3):565-8.
. Gui YX, Fan XN, Wang HM, Wang G, Chen SD. Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol. 2012 May-Jun;34(3):344-9. doi: 10.1016/j.ntt.2012.03.005. Epub 2012 Apr 4.
Lennart Hardell, Mikael Eriksson, Marie Nordstrom. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies.Leuk Lymphoma. 2002 May;43(5):1043-9
Anneclaire J De Roos, Aaron Blair, Jennifer A Rusiecki, Jane A Hoppin, Megan Svec, Mustafa Dosemeci, Dale P Sandler, Michael C Alavanja. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ Health Perspect. 2005 Jan ;113(1):49-54.
R M Romano, M A Romano, M M Bernardi, P V Furtado, C A Oliveira. Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol. 2010 Apr;84(4):309-17. Epub 2009 Dec 12.
. Clair E, Mesnage R, Travert C, Séralini GÉ. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol In Vitro. 2012 Mar;26(2):269-79. doi: 10.1016/j.tiv.2011.12.009. Epub 2011 Dec 19.
Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009 Aug 21;262(3):184-91. doi: 10.1016/j.tox.2009.06.006. Epub 2009 Jun 17.
U.S. Code of Federal Regulations. Accessed 3-15-13 at: [
www.ecfr.gov]
R Mesnage, E Clair, S Gress, C Then, A Székács, G-E Séralini. Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide. J Appl Toxicol. 2012 Feb 15. Epub 2012 Feb 15.
R Mesnage, B Bernay, G-E Séralini. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2012 Sep 21. Epub 2012 Sep 21.
. Green JM, Owen MD. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem. 2011 Jun 8;59(11):5819-29. doi: 10.1021/jf101286h. Epub 2010 Jun 29.
. Heap I. The International Survey of Herbicide Resistant Weeds; available at [
www.weedscience.com], 2010, accessed April 15, 2010.
. María L Zapiola, Carol A Mallory-Smith. Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population. Mol Ecol. 2012 May 24. Epub 2012 May 24.
. Astrid T Groot, Marcel Dicke . Insect-resistant transgenic plants in a multi-trophic context. Plant J. 2002 Aug;31(4):387-406.
. Richard H Coupe, Stephen J Kalkhoff, Paul D Capel, Caroline Gregoire. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci. 2012 Jan ;68(1):16-30. Epub 2011 Jun 16.
. Dani Degenhardt, David Humphries, Allan J Cessna, Paul Messing, Pascal H Badiou, Renata Raina, Annemieke Farenhorst, Dan J Pennock. Dissipation of glyphosate and aminomethylphosphonic acid in water and sediment of two Canadian prairie wetlands. J Environ Sci Health B. 2012 ;47(7):631-9.